
GenericIO SOAP Web Service
Provides simple input/output access to collections of data entities within TeamWork. The GenericIO web services provides access to query, and in some cases, update data stored within TeamWork. The various data entities in TeamWork are converted to a generic xml format that is consistent across all data entities.
Overview
 The URL’s below depend on where your Instance is installed. For example: Enterprise Instance base URL: https://www.schedulesource.net/Enterprise/ Please adjust the URL’s below by replacing <Instance> with your instance’s base URL.
Service URL: <Instance>/TeamWork/Services/GenericIO.asmx
Service Description <Instance>/TeamWork/Services/GenericIO.asmx?WSDL
Security The GenericIO service requires valid credentials for the Enterprise Portal. These are passed as an entCredential object in the body of the request.
Methods

 GetCollection – Gets a collection of data based on the [entitytype] value provided.
 GetCollectionXml – Same as GetCollection but returns named Xml tags for entities, with fields as attributes.
 GetCollectionXmlTags – Same as GetCollection but returns named Xml tags for entities and fields (no attributes).
 UpdateCollection – Updates a collection of data based on the [entitytype] and [actions] parameters.
 UpdateCollectionXml – Same as UpdateCollection but expects an XmlElement in tag + attribute format.
 UpdateCollectionXmlTags - Same as UpdateCollection but expects an XmlElement in tags-only format.

Entity Types The xml format used in this API is the same for all entities. However, the entitytype is specified as an attribute on the collection. Not all entities are updateable, and each entity has a list of fields with varying attributes (data-type, read-only, deprecated, etc.). These entities are described in more detail later in the document.

 User
 Business
 Station
 Employee
 Skill
 LocalUser
 LocalEmployee
 LocalSkill
 Schedule
 ScheduleShift
 Template
 TemplateShift
 PayPeriod
 PaySheet
 TimeProject
 TimeTask
 TimeActivity
 TimeEntry
 TimeAccrualBalance
 LeaveType
 LeaveEntry
 Credential
 EmployeeCredential
 StationCredential

Method: GetCollection

The GetCollection method will fetch a collection of entities. At its simplest, the request only needs to specify enterprise credentials and an EntityType. Here’s an example request (to fetch a list of User’s):
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ser="http://ws.schedulesource.com/teamwork/services/"> <soapenv:Header/> <soapenv:Body> <ser:GetCollection> <ser:entCredential> <ser:Code>EnterpriseCode</ser:Code> <ser:User>EnterpriseUsername</ser:User> <ser:Password>EnterpriseUserPassword</ser:Password>
 </ser:entCredential> <ser:filter> <ser:EntityType>User</ser:EntityType>
 </ser:filter> </ser:GetCollection> </soapenv:Body> </soapenv:Envelope>

 For some collections, it is desirable, and sometimes required, to filter the request by dates and/or Id’s. To add filtering criteria, use FilterItem’s within a FilterValues collection. Here’s an example request to fetch all scheduled shifts, within a single schedule on a particular date (note – for shifts, MinDate and MaxDate are required):
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ser="http://ws.schedulesource.com/teamwork/services/"> <soapenv:Header/> <soapenv:Body> <ser:GetCollection> <ser:entCredential> <ser:Code>EnterpriseCode</ser:Code> <ser:User>EnterpriseUsername</ser:User> <ser:Password>EnterpriseUserPassword</ser:Password>
 </ser:entCredential> <ser:filter> <ser:EntityType>ScheduleShift</ser:EntityType>
 <ser:FilterValues> <ser:FilterItem> <ser:Key>MinDate</ser:Key> <ser:Value>3/11/2012</ser:Value><ser:Operator>=</ser:Operator>
 </ser:FilterItem> <ser:FilterItem> <ser:Key>MaxDate</ser:Key> <ser:Value>3/11/2012</ser:Value><ser:Operator>=</ser:Operator>
 </ser:FilterItem> <ser:FilterItem> <ser:Key>ScheduleId</ser:Key> <ser:Value>124739</ser:Value><ser:Operator>=</ser:Operator>
 </ser:FilterItem> </ser:FilterValues> </ser:filter> </ser:GetCollection> </soapenv:Body> </soapenv:Envelope>
Response Format
All responses share the same xml format. Here’s an example response, with some fields and entities removed for brevity:
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <soap:Body> <GetCollectionResponse xmlns="http://ws.schedulesource.com/teamwork/services/"> <GetCollectionResult entitytype="ScheduleShift">
 <Entity> <Field n="Id" v="4267976"/> <Field n="ScheduleId" v="124739"/> <Field n="BusinessId" v="2"/> <Field n="DayId" v="1"/> <Field n="ClientId"/> <Field n="Date" v="3/11/2012 12:00:00 AM"/> <Field n="ShiftStart" v="1/1/1900 8:00:00 AM"/> <Field n="ShiftEnd" v="1/1/1900 12:00:00 PM"/> <Field n="BreakStart" v="1/1/1900 9:00:00 AM"/> <Field n="BreakEnd" v="1/1/1900 9:15:00 AM"/>

 <Field n="Hours" v="3.75"/> </Entity> <Entity> <Field n="Id" v="4267977"/> <Field n="ScheduleId" v="124739"/> <Field n="BusinessId" v="2"/> <Field n="DayId" v="1"/> <Field n="ClientId" v="0"/> <Field n="Date" v="3/11/2012 12:00:00 AM"/> <Field n="ShiftStart" v="1/1/1900 8:00:00 AM"/> <Field n="ShiftEnd" v="1/1/1900 12:00:00 PM"/> <Field n="BreakStart" v="1/1/1900 9:00:00 AM"/> <Field n="BreakEnd" v="1/1/1900 9:15:00 AM"/> <Field n="Hours" v="3.75"/> </Entity> </GetCollectionResult> </GetCollectionResponse> </soap:Body> </soap:Envelope> In the response above, each “Entity” is of type “ScheduleShift”. The fields contain two attributes each: “n” for name and “v” for value. In the appendices, we provide some XSLT transformations to convert this xml format to other useful formats. The filter values that are available and/or required are listed with the Entity descriptions later in this document.

Filtering Fields
Using FilterItem’s within the FilterValues tag, you can specify limitations on the data to be returned. Any of the fields in the EntityCollection can be used as a filter. In addition, two built-in filter Fields exist: MinDate and MaxDate. Certain entity types require these dates be passed in the filter or they simply default to the current date.
Filtering Operations
The operations available for filtering generally correspond to those available within a SQL environment. The following operations are currently supported:

 = (equal)
 < (less than)
 > (greater than)
 <= (less than or equal)
 >= (greater than or equal)
 <> (not equal)
 NULL (has no value. Note: will not match zero-length strings “”)
 NOT NULL (has a value)
 IN (matches one of the values in comma-separated list)
 LIKE (matches pattern with wildcards)

o % - Any string of zero or more characters.
o _ - Any single character.
o [] - Any single character within the specified range ([a-f]) or set ([abcdef]).
o [^] - Any single character not within the specified range ([^a-f]) or set ([^abcdef]).

Selecting Fields
A special built-in filter value named “Fields” exists to specify the fields you want returned. The value should be a comma-separated list of the fields to return (case-sensitive).

Method: UpdateCollection
 The UpdateCollection method accepts a collection of entities and performs updates as specified in the request. Two key fields specify what types of updates are desired and on what entities. These are:

 entitytype
 actions The entitytype specifies what data is in the collection. The actions attribute is a comma-separated list of desired updates. An action must be supported by the entitytype for it to be executed (see entity descriptions for supported actions). If not specified, the actions value defaults to “Add, Update”, which will attempt to add or update records in the database based on the data provided. Updates are only performed on items that can be found in the database and so key identification fields must be provided in the data for updates to occur. When adding data, certain key fields will be required (these are listed with entity descriptions). Each entity in the collection passed to the UpdateCollection method can have different fields that may be updated. Unless loading data, these records can be sparse and only contain the fields that have changed (along with the required fields). Here’s an example of updating an Employee’s LastName:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ser="http://ws.schedulesource.com/teamwork/services/"> <soapenv:Header/> <soapenv:Body> <ser:UpdateCollection> <ser:entCredential> <ser:Code>EnterpriseCode</ser:Code> <ser:User>EnterpriseUsername</ser:User> <ser:Password>EnterpriseUrerPassword</ser:Password>
 </ser:entCredential> <ser:collection entitytype="Employee" actions="Update"> <ser:Entity> <ser:Field n="LastName" v="Walker"/> <ser:Field n="ExternalId" v="44555"/> </ser:Entity> </ser:collection> </ser:UpdateCollection> </soapenv:Body> </soapenv:Envelope> In this case, the only required field is “ExternalId”, which is a unique field from an external source (not TeamWork, but from one of your systems). The response data will provide a summary of the actions taken. In addition, if any data is invalid, the data is returned in the response. Below are examples of a successful and unsuccessful update request.

SUCCESSFUL RESPONSE

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <soap:Body> <UpdateCollectionResponse xmlns="http://ws.schedulesource.com/teamwork/services/"> <UpdateCollectionResult> <Note k="Added" v="0"/> <Note k="Updated" v="1"/> <Note k="Found" v="1"/> <Note k="Skipped" v="0"/> <Note k="Invalid" v="0"/> </UpdateCollectionResult> </UpdateCollectionResponse> </soap:Body> </soap:Envelope> A collection of Note’s are returned, with “k” = key and “v” = value. These provide a summary of the update. In the response above we see that one record was found (due to correct Id’s) and one record was updated. If an entity is “updated”, but no data has changed (e.g. change LastName from “Smith” to “Smith”), the update will be tallied as “Skipped”.
UNSUCCESSFUL RESPONSE

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <soap:Body> <UpdateCollectionResponse xmlns="http://ws.schedulesource.com/teamwork/services/"> <UpdateCollectionResult> <EntityCollection entitytype="Employee" classification="Invalid"> <Entity> <Field n="LastName" v="Walker B"/> <Field n="BadId" v="44555"/> <Note k="Error" v="Missing ExternalId"/> </Entity> </EntityCollection> <Note k="Added" v="0"/> <Note k="Updated" v="0"/> <Note k="Found" v="0"/> <Note k="Skipped" v="0"/> <Note k="Invalid" v="1"/> </UpdateCollectionResult> </UpdateCollectionResponse> </soap:Body> </soap:Envelope> Here you’ll notice that we have a collection of “Invalid” entities. These are the ones that failed. In addition, with each failed entity is a Note with “k” (key) = “Error” and an error description. Finally the summary Note with “k” = “Invalid” has a value of “1”. The inclusion of invalid data and error messages in the response will allow you to quickly troubleshoot UpdateCollection errors. Any integration service that relies on this service should log all responses locally for some period of time.

ENTITY DESCRIPTIONS
 The generic nature of the xml format used in this service allows us to add entities and fields in the future without breaking major functionality. Some fields, however, that are included in the service right now could be removed at some point (these are listed as deprecated).
FIELDS
Fields are the named values associated with an entity. Typically fields are inherent to the entity, but in some cases they exist on other entities and are provided for convenience. An example is BusinessName on a ScheduleShift. The BusinessName is stored on the Business entity but is provided in the GetCollection response nonetheless. Each field has a data type which specifies what kind of value the field holds. Data types include: DateTime, Integer, String, Real, and Boolean. Some fields are read-only. These fields can be fetched by GetCollection but are not updatable by UpdateCollection. One field, “Password”, cannot be fetched but is updatable when the action “Password” is included in the UpdateCollection request. Finally, some fields may be available in this service but are currently unused in the application.
EXTERNAL ID’S
Some entities require “ExternalId’s” for adding or updating. These externalId’s must be generated by the customer and exist on records within TeamWork for the updates to work. This allows customers to manage records in their systems and link them to records in TeamWork without having to import Id’s from TeamWork into their systems. Currently, the ExternalId’s only exist on some top-level items, like “Employee”, “Business”, and “User” (actually for “User”, it’s Username). We carry them down to entities like “Skills” and “LocalSkills”. Some entities lacking dedicated “ExternalId’s” include Schedule and ScheduleShift. When integrating schedule data, the customer will have to rely on Id’s generated in TeamWork to successfully isolate and update specific records.
ACTIONS
The following actions are supported by some of the entities. Support for actions will increase as new releases are developed. You can include multiple actions in the Actions attribute by separating the keywords by commas (e.g. Actions=”Update,Password”). Add – Add a new record (entity) to the system. Update – Updates a record’s field values. Password – Updates the password of a User or Employee. Deploy – Deploys a User or Employee to a Business (Location). Delete – Deletes the entity from the system (very limited support). Inactivate – Sets an employee (or user) as inactive. Requires field Termdate. Assign – Assigns (or clears) an employee to a shift.

Business
Also known as a “Location” in TeamWork. The business organizes all scheduling and time tracking activities. Currently Business entities are READ-ONLY. In addition, the Business entity stores a lot of settings that might be deprecated by moving them to a more generic and flexible settings entity.

FIELD DATA TYPE DESCRIPTION
BusinessId Integer Unique Id generated by TeamWork.
Name
Code
BusinessExternalId String An Id that corresponds to an external system.
City
State
Country
Address1
Address2
Zip
Phone
Fax
Enabled
MaxEmp
MinHours
MaxHours
MaxHoursStrict
EmpConsecutiveDays
MinDowntime
MaxUsers
Guid
AllowSwapping
TimeZoneOffset
TimeZoneUsDay
EmpFulLView
Randomize
RandomShifts

…

 (NOT COMPLETE)

User
Users have management-level access to the system. A user might have access to only the Enterprise portal, only Location Portal, or both. LocalUser entities must exist for a User to access a Location. The User entity however, stores the Name, Email, Username, etc. for Users and LocalUsers.

FIELD DATA TYPE DESCRIPTION
UserId Integer Internal Id generated by TeamWork.
Username String Unique Id for sign-in. Also used as “ExternalId” for this entity.
FirstName String
LastName String
Email String The user’s email address.
Admin Boolean A flag that turns Enterprise Portal access on or off.
Enabled Boolean A flag that enables or disables the User. (Will disable notifications for example.)
Phone String The user’s phone number.
Udf1 String User-defined field.
Udf2 String User-defined field.
Udf3 String User-defined field.
Udf4 String User-defined field.
Udf5 String User-defined field.
Udf6 String User-defined field.
IsReadOnly Boolean A flag to specify user has read-only rights to the system. Now controlled by Role Security.
FolderId Integer Internal Id for User’s top-level folder access.
Password String Not visible but can be updated by including action “Password”.

Filters
Currently no filter values are supported. The GetCollection method will return a list of all Users.
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Add Username FirstName, LastName
Update Username
Password Username Password

Employee

FIELD DATA TYPE DESCRIPTION
EmployeeId Integer Internal Id generated by TeamWork.
LastName String
FirstName String
NickName String
PhoneNo String
PhoneNo2 String
PhoneNo3 String
Fax String
Address String
Adddress2 String
City String
State String
Postalcode String
Country String
EmployeeNum String
Email String
MinHours
MaxHours
MaxShiftsPerDay
Created DateTime
MaxDays
Notes
ExternalId String
Hiredate DateTime
Termdate DateTime
MaxHousrPerDay
Birthdate DateTime
Udf1 String
Udf2 String
Udf3 String
Udf4 String
Udf5 String
Udf6 String
AllowSwap Boolean
Rank
CardId
DefaultBid
TimeZoneOffset
TimeZoneUsday
IVRPinCode
DefaultTimeCode

BioID
DefaultTimeActivity
MaxConsecDays
WeeklyOT
DailyOT
Guid String

Filters
Currently no filter values are supported. The GetCollection method will return a list of all Employees.
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Add ExternalId FirstName, LastName
Update ExternalId
Password ExternalId Password

Station
Stations represent work positions for shifts. Schedules use LocalStation records for tracking shifts. A LocalStation is a Station that has been deployed to a Business (Location). The Station entity is the master record for stations with attributes shared across the enterprise.

FIELD DATA TYPE DESCRIPTION
StationId Integer Internal Id generated by TeamWork.
Name String The name of the station or position.
Durations String (Deprecated)
Notes String
Udf1 String
Udf2 String
Udf3 String
Udf4 String
Udf5 String
Udf6 String
PayRate
AllowSwap Boolean
ExternalId String
Alias String
Color String

Filters
Currently no filter values are supported. The GetCollection method will return a list of all Stations.
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Add ExternalId Name
Update ExternalId

Skill
A master record (enterprise-level) that links an Employee to a Station. This link defines the master list of allowed stations for an employee. Within a location (Business) an employee might have some sub-set of this master list. The LocalSkill is the localized list for a location.

FIELD DATA TYPE DESCRIPTION
Level Integer (0-9) The numeric skill level, or priority of the employee working the station.
EmployeeExternalId String The unique employee identifier from external system.
StationExternalId String The unique station identifier from external system.

Filters
Currently no filter values are supported. The GetCollection method will return a list of all Skills.
Updates
The UpdateCollection method does not support updates to Skill entities.

LocalUser
LocalUser entities must exist for a User to access a Location. Almost all values for a LocalUser is inherited from the User entity.

FIELD DATA TYPE DESCRIPTION
UserName String Unique Id for sign-in. Also used as “ExternalId” for this entity.
FirstName String Read-Only
LastName String Read-Only
Disabled Boolean A flag to turn off or on sign-in access to the location.
BusinessExternalId String The unique location identifier from external system.

Filters
The GetCollection for LocalUser supports a filter on BusinessId.
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Update UserName, BusinessExternalId Disabled (the only updatable field)
Deploy UserName, BusinessExternalId

LocalStation

FIELD DATA TYPE DESCRIPTION
Name String
ExternalId String The unique station identifier from external system.
BusinessExternalId String The unique location identifier from external system.

Filters
The GetCollection for LocalStation supports a filter on BusinessId.
Updates
The UpdateCollection method does not support updates to LocalStation entities.

LocalSkill

FIELD DATA TYPE DESCRIPTION
Level Integer (0-9) The numeric skill level, or priority of the employee working the station.
EmployeeExternalId String The unique employee identifier from external system.
StationExternalId String The unique station identifier from external system.
BusinessExternalId String The unique location identifier from external system.

Filters
The GetCollection for LocalStation supports a filter on BusinessId.
Updates
The UpdateCollection method does not support updates to LocalSkill entities.

LocalEmployee
LocalEmployee entities must exist for an Employee to access, and be scheduled within, a Location. Almost all values for a LocalEmployee is inherited from the Employee entity.

FIELD DATA TYPE DESCRIPTION
EmployeeNum String A unique id that is used for sign-in (equivalent to Username).
FirstName String Read-Only
LastName String Read-Only
HireDate DateTime The “start” or “effective” date for the employee at the location.
TermDate DateTime The “end” or “termination” date for the employee at the location.
ExternalId String The unique employee identifier from external system.
BusinessExternalId String The unique location identifier from external system.

Filters
The GetCollection for LocalEmployee supports a filter on BusinessId.
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Update ExternalId, BusinessExternalId (or BusinessId)
Deploy ExternalId, BusinessExternalId (or BusinessId)

Schedule
A master record (location-level) for a collection of shifts. The schedule defines a date range and holds attributes such as “Publish” and “Firm”.

FIELD DATA TYPE DESCRIPTION
ScheduleId Integer Internal Id generated by TeamWork.
BusinessId Integer Internal Id generated by TeamWork.
Name String
DateStart DateTime
DateEnd DateTime
Created DateTime
Modified DateTime
Publish Integer
Firm Integer
Archived Integer
IsCompliant Integer
EnforceCompliance Integer
AllowSwap Integer Flag to turn swapping on or off for the shifts within the schedule.
IsEnterpriseDeployed Boolean Flag to indicate if Schedule was created by deploying enterprise shifts.
EnterpriseScheduleId Integer Internal Id generated by TeamWork. Links the Schedule to an EnterpriseSchedule that was the basis for its creation.
BudgetSeriesId Integer Internal Id generated by TeamWork. Links a Schedule to a budget data series for analysis.
BusinessExternalId String The unique location identifier from external system.

Filters
Required Filter Values: MinDate, MaxDate Optional Filter Values: BusinessId, ScheduleId, ScheduleIdList (a comma separated list of ScheduleId’s)
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Add BusinessExternalId (or BusinessId) DateStart, DateEnd, Name
Update ScheduleId, BusinessExternalId (or BusinessId)

ScheduleShift
A work shift, for an Employee at a Station within a Location.

FIELD DATA TYPE DESCRIPTION
Id Integer Internal Id generated by TeamWork.
ScheduleId Integer Internal Id generated by TeamWork. Links a shift to a Schedule.
BusinessId Integer Internal Id generated by TeamWork. Links a shift to a location.
DayId Integer Represents the day of the week. 1 = Sunday, 2 = Monday, etc.
ClientId Integer Internal Id generated by TeamWork. Links a shift to a Client.
Date DateTime
ShiftStart DateTime Start time of shift – currently the date portion is ignored.
ShiftEnd DateTime End time of shift – currently the date portion is ignored.
BreakStart DateTime
BreakEnd DateTime
Hours Total hours of shift. Shift Times span minus Break Times span.
EmpRate An estimate of the employee’s pay rate at time of shift.
EstCost An estimate of the cost of the shift in wages.
IsSwapping Flag to specify if shift is posted on swap board.
SwapAvailDate Timestamp of the swap being posted on swap board.
SwappingToId When swap approvals are enabled, this holds the id of the employee who claimed the shift but is awaiting approval.
ShiftGroup
Note
Created DateTime
Updated DateTime
UpdateUserType
UpdateUserId
UpdateAction
IsEmployeeApproved
SwapReason
BidBoardId
EnterpriseNote
UpdateReason
InactiveCode
ScheduleTourId
EnterpriseShiftId
LastName
FirstName
EmployeExternalId
StationName
StationExternalId
BusinessName
BusinessExternalId

Filters
Required Filter Values: MinDate, MaxDate Optional Filter Values: BusinessId, ScheduleId, ScheduleIdList (a comma separated list of ScheduleId’s)
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Add ScheduleId, BusinessExternalId (or BusinessId), StationExternalId (or StationId)

DateStart, DateEnd, Name
Update Id

TimeEntry
A time clock, time card, or admin entry that track time & hours for payroll.

FIELD DATA TYPE DESCRIPTION
Id Integer Internal Id generated by TeamWork.
LocalEmployeeId Integer Internal Id generated by TeamWork. Is the id of the employee at the location.
BusinessId Integer Internal Id generated by TeamWork. Id of a location.
ScheduleShiftId Integer Internal Id of a shift, linked to Time Entry.
LocalStationId Integer Internal Id of a station at a location, linked to Time Entry.
LeaveEntryId Integer Internal Id of a leave entry, linked to Time Entry.
EntryType String The time of time entry: clock, card or admin.
ClockOn DateTime The UTC time of clocking on.
ClockOff DateTime The UTC time of clocking off.
ClockHours Double The calculated hours based on ClockOn and ClockOff.
FinalOn DateTime The UTC start time of entry, after editing and rounding.
FinalOff DateTime The UTC end time of entry, after editing and rounding.
FinalHours Double The calculated hours based on FinalOn and FinalOff.
ScheduleDate DateTime Date value of the clock/final on time in Location timezone.
ProjectCode String Code for project.
TaskCode String Code for task.
ActivityCode String Code for activity.
Location1 String Location identifier of clock on – might be IP address or phone number, for example.
Location2 String Location identifier of clock off – might be IP address or phone number, for example.
IsError SmallInt Flag to indicate that the entry is INVALID. (These are never exported to payroll.)
IsLeave SmallInt Flag to indicate that project/task is set as leave.
IsBillable SmallInt Flag to indicate that project/task is set as billable.
IsPaid SmallInt Flag to indicate that project/task is set as paid.
CreatedDate DateTime UTC timestamp of entry creation.
UpdatedDate DateTime UTC timestamp of last update to entry.
UpdateUserType String Type of user making last update.
UpdateUserId Integer Internal id of user making last update
IsEmployeeAlert Byte Employee-activated flag to alert manager of issues with entry.
EmployeeNotes String Free text field for employee-entered notes.
UserNotes String Free text field for manager-entered notes.
BreakHours Double Hours to removed (as unpaid) from FinalHours.
ClockOnByUserId Integer Internal Id of manager, if clocking on for employee.
ClockOffByUserId Integer Internal Id of manager, if clocking off for employee.
PayRate Double Calculated from Employee/Rate Matrix
BillRate Double Calculated from Employee/Rate Matrix
IsReviewed SmallInt Flag to indicate that an IsError entry has been reviewed.
PayPeriodId Integer Internal Id of pay period (if it exists).
EmployeeId Integer Internal Id of the employee.

IsBreak SmallInt Flag to indicate that project/task is set as break time.
ClockReason String Optional reason code selected by employee when certain clocking conditions exist.
IsOvertimeExcluded SmallInt Flag to indicate that project/task is set as non -overtime.
BusinessName String Name of the location.
BusinessExternalId String External Id of the location.
LastName String Employee’s last name.
FirstName String Employee’s first name.
EmployeeExternalId String External Id of the employee.
LeaveTypeCode String Code of leave type, if entry linked to a leave entry.
LeaveTypeName String Name of leave type, if entry linked to a leave entry.
LeaveTypeExternalId String External Id of leave type, if entry linked to a leave entry.
ProjectName String Name of project.
TaskName String Name of task.
ActivityName String Name of activity.
EmployeeUDF{1-6} String (6 fields) – Employee user-defined values.

Filters
Required Filter Values: MinDate, MaxDate
Updates
The UpdateCollection method supports the following actions with the given conditions:

ACTION Required Identifiers Required Fields
Add EmployeeExternalId (or EmployeeId, BusinessExternalId (or BusinessId),

ProjectCode, TaskCode, FinalOn, FinalOff
Update Id

Support
For questions or issues related to the GenericIO Web Service, please contact support@schedulesource.com or open a ticket at https://helpdesk.schedulesource.com

APPENDIX A – XSLT Transformations
 The following xslt templates will convert the GetCollection xml response to more specific xml formats. The first transformation creates an xml document with no attributes. The EntityType becomes the top tag and the field values are child tags. The second transformation creates Tags for each entity based on EntityType with attributes for the field values.
XSLT to convert response to all elements w/o attributes:
<?xml version="1.0" encoding="ISO-8859-1"?> <!-- Elements --> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/"> <xsl:for-each select="GetCollectionResult/Entity"> <xsl:element name="{/GetCollectionResult/@entitytype}" > <xsl:for-each select="Field"> <xsl:element name="{@n}"> <xsl:value-of select="@v" /> </xsl:element> </xsl:for-each> </xsl:element> </xsl:for-each> </xsl:template> </xsl:stylesheet>

XSLT to convert response to elements with attributes:
<?xml version="1.0" encoding="ISO-8859-1"?> <!-- Element with Attributes --> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/GetCollectionResult"> <xsl:for-each select="Entity"> <xsl:element name="{/GetCollectionResult/@entitytype}" > <xsl:for-each select="Field"> <xsl:attribute name="{@n}" > <xsl:value-of select="@v" /> </xsl:attribute> </xsl:for-each> </xsl:element> </xsl:for-each> </xsl:template> </xsl:stylesheet>

